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ABSTRACT

Vacuum forming is a popular manufacturing technique which con-
forms a 2D plastic sheet to a 3D mold. However, vacuum forming
plastic with 2D texture faces a same challenge found in texture
mapping: when applying a texture an arbitrary 3D surface, its scale,
shape, and angle is not preserved. To address this, we simulate
vacuum forming the 2D texture using a mass-springs cloth simula-
tion with gravity and vacuum forces, then create a conformal map
via global parameterization of the mesh to pre-distort the texture.
This solution enables applications such as creating undistorted
MRI coils closely conforming to any 3D scanned head shape or
thermoforming other plastic objects such as figurines or models.
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1 INTRODUCTION

Magnetic Resonance Imaging is a powerful, noninvasive imag-
ing technique that can produce high resolution images of human
anatomy. While a conventional imaging system captures emitted
or reflected light with an image sensor, MRI takes advantage of
hydrogen atoms (protons) with intrinsic magnetic moments. The
magnetic moments of the protons are aligned with a main field
called By. They are then excited with a secondary field called B;.
The excitation causes a change in magnetic field which can be
detected with a coil due to Faraday’s Law of Induction.
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In a typical system, arrays of coils are used to decrease scan
time and increase SNR. One issue with MRI coils is that they are
designed to be one size fits all. Pediatric patients will have to use
the same coils as a large adult. Just like a conventional imaging
system, the MR signal drops off quadratically based on the distance
from the subject, resulting in noisier scans (Figure 1 [2]). Therefore,
it is essential to have coils that closely conform to the body in order
to get high quality images.
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Figure 1: In these figures from [2], the effects of MRI coil
positions can be seen. a: MRI set up where the coil is far from
the spine in which we wish to scan. b: Resultant noisy spine
MRI from (a). c: Resultant low-noise spine MRI from (d). d:
MRI set up with the MRI coil conforming to the person’s
neck shape.

Vacuum forming is a commonly used manufacturing technique
which involves heating a sheet of plastic beyond its glass transition
temperature, draping over a mold, and drawing a vacuum to force
the plastic to conform to the mold. Silver ink can be patterned onto
the flat sheet to create 3D electronics on complex surfaces. These
printed structures can be turned into antennas that can receive
the MR signal. By using a mold based on a 3D scan of a person, a
custom, highly conformal coil array can be rapidly manufactured.

A major drawback to this approach is that as the plastic is
stretched over the 3D mold, the printed pattern on the sheet is
distorted. This leads to non-uniformity and warping in the resultant
electronics. In particular, the close proximity of the coils between
one other generates mutual inductance (adding noise), so it’s im-
portant that the area overlap between neighboring coils remain
constant to cancel out this interference. All in all, pattern distor-
tions hurt the MRT’s ability to properly receive signal (Figure 2).
The goal of this paper is to pre-distort the 2D pattern such that it
preserves its original shape and scale after vacuum forming.

To meet this goal, we simulate the movement and stretching of
the plastic during the vacuum forming process using gravitational
and vacuum forces. After figuring out the shape of the plastic at
rest, we use an open source library to perform a planar parameteri-
zation of the surface mesh. This gives us a UV map that minimizes
the angular and area distortion produced when mapping from the
planar texture to the 3D mesh. After that, we utilize rasterization
techniques to convert the plastic mesh sheet and UV map back into
a 2D image, which can be printed onto a plastic sheet and vacuum
formed into a plastic mold with little distortion.

2 RELATED WORK

Schuller et. al. propose a method of manufacturing colored 3D
objects via thermoforming [8]. By simulating the forming process,
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Figure 2: Left: The uniform MRI coil texture, composed of
perfectly round circles. Right: Vacuum forming the uniform
coil texture to a head shape mold creates distorted oblong
coils.

they produce distorted 2D textures that, when printed onto a plastic
sheet and vacuum formed over a mold of the 3D model, result in a
colored version of the object. One downside to their solution is that
it requires a fully shaded and textured 3D model as input. Texturing
requires both time and specialized skills, and can be difficult for even
professionals to do when high amounts of precision is required (as
it is for our use case). Our solution will only require a non-distorted
2D image and a blank 3D model.

Wang et. al., discuss methods of texture synthesis and mapping
that minimize distortion [11]. Their solutions are based off of global
conformal parameterization, which produce mappings with low
angular distortions, but build upon them to provide a trade-off
between angular and area.

Baraff [1], Macklin [6], and Kauppila [3] all provide insight on
the implicit Euler time integration method for simulations. Implicit
Euler builds upon concepts used in explicit Euler and Verlet inte-
gration, except that it can be made unconditionally stable such that
for a mass-springs system, the time step and stiffness (k) can be
very high. The trade-off is the difficult implementation and longer
calculations leading to longer run-time per evaluation, but this is
easily offset by the much larger time steps that the simulation can
take, leading in a net efficiency boost. To solve the linear system
of equations that is set up from the implicit Euler method, there
are many linear system solvers available. Shewchuk [9] provides a
detailed description of the conjugate gradient method, which is a
very popular iterative method. Conjugate gradient method works
well in particular for the cloth simulation because of the sparseness
of the matrix (most entries are zeros),

3 SIMULATION

To simulate the vacuum forming process, we model the plastic as a
cloth and use Assignment 4: Cloth Simulation as a base. The general
procedure of the simulation is that the plastic sheet falls onto the
3D object, sticking to it in the process. A vacuum then pulls the
plastic towards the object, removing any gaps of space between
the plastic sheet and the object. The resultant plastic sheet has the
same surface contour as the 3D object.

To implement this, we start by adapting Assignment 4 to sup-
port the insertion of arbitrary 3D models into the scene. We also
integrate the open-source library Embree to do performant ray-
tracing, which is used to detect collisions between the plastic and
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Figure 3: Left: The resting state after the cloth falls onto the
head mold. Right: The resting state after vacuum forces and
pinning is applied.

the 3D model. Finally, we experiment with a different integration
scheme, namely implicit Euler time integration, to further stabilize
the simulation.

3.1 Gravity and Vacuum Forces

Due to the use of a spring model, gravity is ignored in our simula-
tion.

Vacuum forces are initiated when the simulated sheet makes
contact with the platform. Vacuum is modeled as an inwards force
proportional to the area of each triangle parallel to the surface
normal[12].

Fyqc = —pAi

The parameter p is a constant that is increased by a user defined
rate until all particles are stuck or a maximum threshold is reached.
Figure 3 shows the cloth in multiple resting states: after falling onto
the 3D shape and after being vacuum formed.

3.2 Collisions

Collisions for arbitrary meshes are added to the simulation by
utilizing the Embree Ray Tracing Kernel [10]. At every time step,
the cloth moves downwards based off of a user defined velocity. For
each point mass, a ray is generated from the previous position to
the new position. This ray is intersected against the BVH’s of the
objects in the scene. If there is an intersection, the point mass was
moved back to the point of intersection and labeled “stuck". Like
the simulation described in [8], we assume that any plastic that
collides with another surface experiences infinite friction, which
is a reasonable assumption based on our experience with vacuum
forming.

3.3 Implicit Euler Time Integration

In cloth simulations using the mass-springs model, the main task
involves finding the position of each particle (a vertex of the mesh
with a mass) at time ¢. In our previous cloth simulation work, we
used an easy time integration method, Verlet integration, to find
the particles’ positions. Verlet integration [7] is an extension of
forward Euler, such that for all particles,

v = (Xt — Xp_qp)/dt

Xpedr = Xp +dt % v + ap * di?

where dt is the time step, and a; is the acceleration at the current
time step which can be found from Newton’s second law: F = ma;.
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F includes both internal forces e.g. spring forces, as well as external
forces e.g. gravity.

Verlet is easy to implement, quick to compute, and commonly
gets the job done especially when adding damping forces and con-
straints. However, it will still blow up in stiff systems or with large
time steps dt. We refer to [1] for the proof showing the problem
with forward Euler with large k (stiffness) or dt. This means we
would like to find a better time integration technique which does
not fail on these more extreme cases. For example, an application
of stiff springs would be for plastic deformation using the cloth
simulation. The cloth would have to start with very stiff springs
in order for a heating algorithm to lower the spring constants any
large amount.

Continuing in [1], we then turn to implicit Euler as the time
integration method which can be made unconditionally stable. The
time step is shown to be limitless and k can also be very large. In
explicit Euler, the future position is calculated using the current
position, velocity, and acceleration. However, in implicit Euler, the
future time step’s derivatives (velocity, acceleration) are used to
calculate the future position. The end goal is to find dx for every
particle.

Referencing [3] and [6] for implicit Euler applied to mass-spring
systems, the dx we seek can be found with

dx =dt * (vs + dv) (1)

where dv is change in velocity. The challenge is finding dv which
draws from the future velocity.

In order to find dv, the Jacobians § f/dv and 8 f/Sv must be
found, with respect to each particle. The Jacobians are only non-
zero matrices when particle i is connected to particle j with a
non-zero spring.

)
— =Ixkd
v
where kd is the damping constant, and
of
o ks * [xi5 @ xij + (1 = r/|xi50) * (I — xi5 ® xi5)]

where ks is the spring stiffness constant, x;; = x; — xj, ® is outer
product, and r is the spring resting length.

Once the Jacobians for all particles are found, solve a linear
system of equations to find dv of each particle:
(M—dt*g—dtz*ﬁ)*dv:dt*(ﬂ+dt*5f/5x*vt)
dv ox
where M is I * mass for the particle. This equation can be more
simply written as A = dv = b. To reiterate, once dv is found, it can
easily be plugged into (1) to find dx to move the particles.

Next, we describe solving the linear system of equations A*dv =
b, which is possible with the Jacobians and previous information.
Both [3] and [6] suggest the conjugate gradient (CG) method as the
linear system solver. We reference Shewchuk [9] to implement CG.
CG is popular for solving sparse systems of linear equations (most
entries are zeros) since other methods such as back substitution may
require too much memory, and it is iterative so it translates well
into code. It requires A which is square, symmetric, and positive-
definite, which suffices from the nature of both mass particles of the
spring being affected by an equal and opposite force. Due to this,
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Figure 4: Left: The resting state after the cloth falls onto the
head mold. Right: The resting state after vacuum forces and
pinning is applied.

this gradient descent method is a good choice for a linear system
solver. The initial guess is set to a vector of zeros.

Lastly, the above parts deal with the internal forces between
particles, resulting from spring and damping forces. However, the
simulation still needs to account for external forces including but
not limited to gravity. This is handled similarly to the cloth simula-
tion project: Add up external forces for each particle and integrate
them explicitly. This is good for our specific scenario because the
blow-up is caused by the internal forces e.g. high stiffness or large
time step, and not motion from gravity.

4 PRE-DISTORTION

4.1 Breadth-First Area Normalized
Reallocation

By the end of the simulation, each triangle has a new area but its
vertices still correspond to the same UV coordinates. This implies
that each triangle is assigned an equal amount of area in the texture
domain. For our first attempt at pre-distortion, we tried to assign
each triangle an area in the texture domain proportional to its new
area in the mesh. This was implemented by starting with a seed
triangle and preforming a breadth first search. The UV coordinates
of the seed triangle were fully assigned. For each neighbor, the third
UV coordinate was determined by rotating the triangle into the
plane of the seed and using basic trigonometry to preserve angle
in the texture domain. This was repeated until all triangles of the
mesh were visited. Unfortunately, this method is incorrect since
the UV parameterization would depend on which seed triangle was
used and which direction the mesh was traversed. In addition, by
the end of the breadth first search, so much floating point error
had accumulated that the texture had serious artifacts as shown in
figure 4.

4.2 Conformal Parameterization

Parameterization is the mapping from a 3D point p on mesh M to a
2D point on a planar parameterization domain @¢(p) = (u(p), v(p))
[11]. A very common use case of parameterization is texture map-
ping, where the surface of a 3D model is mapped to a 2D image
through a UV map. The 2D image can then be colored or textured
with 2D image manipulation tools.

A global conformal parameterization is such a mapping that also
seeks to preserve angles between any two intersecting curves, and
as mentioned earlier, there exist methods that seek to preserve
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Figure 5: Left: Pre-distorted texture before scaling and align-
ment to the 3D mesh. Right: Pre-distorted texture after
alignment.

area as well - which normally means triangluar area for triangu-
lated meshes. One such solution is the as-rigid-as-possible (ARAP)
parameterization procedure. ARAP defines the energy of a parame-
terization by the distortion of each local triangle from its original
shape/size, while maintaining the constraint that all triangles must
fit together in a shape consistent with its 3D model [4]. It then uses
an iterative energy minimization process to find a well-performing
result.

Once our vacuum forming simulation has completed, we wish
to compute a UV map parameterization that holds the angle and
area preserving traits described earlier. To do this, we integrate
part of the open-source library CGAL (Computational Geometry
Algorithms Library) to compute the ARAP parameterization of the
surface mesh of the plastic sheet.

The resultant UV map that comes from the procedure is unpre-
dictably modified, i.e. the borders and center of the original image
are not maintained, as shown in Figure 5. To resolve this, we imple-
ment a series of safe operations we can perform on the UV map,
where a safe operation is defined as one that does not introduce fur-
ther distortion or break the UV mapping entirely. These operations
include global translation, rotation, and scaling.

The operations are built into the GUI in the form of sliders and
are used to adjust and align the texture to its proper place. See
Figure 5 for the aligned texture.

4.2.1 Modifications to CGAL. The ARAP parameterization pro-
cedure provided by CGAL gives us the ability to balance between
prioritizing minimal angular distortion and minimal area distortion.
After running some experiments, we choose to prioritize area, since
the patterns used in this context are uniformly patterned circles
and not as vulnerable to angular distortion.

One difference between our use case and other uses for conformal
parameterization (e.g. generating visual assets for video games)
is that we wish to minimize distortion in a central area of the
resultant vacuum formed plastic, where the electronics for the MRI
are actually placed in the end. Thus it would be beneficial if the
ARAP parameterization procedure weighed areas in the center
higher in important, thus pushing distortion out into the edges.
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To this end, we attempt to modify the CGAL library to add this
functionality.

4.3 Rasterization and Post-Processing

At this point in the process, we have a UV map that results in an
undistorted appearance when applied to the surface of the plastic
sheet after its been vacuum formed. The next step is to reverse the
process; that is, generate the pre-distorted 2D image that would
produce the same appearance as the UV map when printed directly
on the plastic sheet.

To do so, we store the starting positions of each vertex from
the start of the simulation. The mesh begins as a planar surface
(since in vacuum forming the plastic starts out as a flat sheet). This
means we can discard the y-component of each position to obtain a
set of 2D points and triangle, where each point has a known color
mapping from itself back to a UV point on the original texture.

To generate the pre-distorted image, we adapt Assignment 1:
Rasterizer to perform texture mapping on the data described. Specif-
ically, we write into an SVG file the positions of vertices for each
triangle and their corresponding UV values. Then with Assign-
ment 1, we read in the svg, rasterize each of the triangles using
Barycentric coordinate interpolation, and write the results into a
data structure that we then load into a PNG. Finally, the PNG is
loaded into Adobe Illustrator and processed so that it can be printed
onto the plastic sheet.

5 RESULTS

As seen in Figure 6, we illustrate that the simulation of pre-distorting
the texture succeeds in preserving shape and size of the original
input texture.

We also attempted to vacuum form the resultant pre-distorted
texture shown in Figure 6b. The resulting patterned 3D mold is
shown in Figure 7. The result of this is less perfect, as the circular
coils still display distortion. However, when compared to the origi-
nal vacuum formed result (Figure 2), the peripheral coils retain a
much more circular shape.

The error in the physical fabrication is at least partially attributed
to human manual manufacturing inaccuracies. For example, a large
inaccuracy comes from mis-aligning the placement of the mold
in the vacuum forming machine in respect to its texture. Another
possible error arises from accidentally flipping the printed plastic
texture, sabotaging the correct orientation and causing the pre-
distortions to be in the incorrect location while vacuum forming.

6 CONCLUSION

In summary, we have shown that our pipeline has been partially suc-
cessful in producing patterned 3D plastic molds with less distortion
and thus better performance when used to build MRI hardware.

Throughout the course of the project, we learned a great deal
about parameterization concepts and techniques, time integration
methods, and various other parts of the graphics pipeline. We also
learned a lot of practical knowledge on integrating various projects,
libraries, and codebases into one cohesive workflow.

We ran into a large number of unforeseen challenges in imple-
menting what we thought would be a straight-forward solution.
One such problem resulted from the new complex data structures
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Figure 6: a: Input un-distorted texture. b: Pre-distorted tex-
ture from our pipeline. c: Un-distorted texture mapped onto
the 3D shape from vacuum forming. d: Pre-distorted texture
mapped onto the 3D shape from vacuum forming,.

Figure 7: The physical result of vacuum forming the pre-
distorted texture seen in Figure 6b. Although imperfect due
to manual manufacturing practice, the peripheral coils are
more circular and less distorted than results of un-distorted
textures in Figure 2.

that were necessary for performing special matrix and vector mul-
tiplications used in implicit Euler time integration. We had trouble
implementing this and the implicit Euler integration did not work
well. A similar issue arose when attempting to modify the CGAL
library to prioritize minimizing distortion in the center, where we
ran into difficulty parsing the codebase to figure out what needed
to be changed. These difficulties prevented us from successfully
adding the feature.

Another issue we ran into was in preventing unpredictable scal-
ing and offset issues from popping up in the 2D image during
the rasterization and post-processing parts of the pipeline, which
caused a lot of problems when attempting to align the 2D image
onto the plastic.

However, despite these challenges, we believe the results of our
project show that they can potentially help improve existing MRI
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technology, and should be useful in creating custom sized MRI coils
for different head shapes and sizes.

7 FURTHER WORK

There are many additional features and methods that can be added
to this project in order to increase its physical accuracy as well as
usability.

We wish to perform further research on parameterization and
texture distortion. For example, in Levy et al [5], they minimize
angle distortion and also introduce a segmentation algorithm to
create a 2D texture sheet. It may be possible to do local parameteri-
zation or a form of segmentation in order to handle more difficult
cases when we attempted conformal mapping, such as the saddle
function shape.

In Schuller et al [8], the plastic simulation is more advanced be-
cause of the plastic physics. This includes viscosity of viscous sheets
(such as plastic), as well as plasticity, which describes how plastic
should lightly bend when heated rather than simply stretching and
running down from gravity.

Lastly, we considered adding a heating simulator to emulate the
vacuum former’s multiple area heat lamps. Using a similar drop-off
to irradiance drop-off, we know that areas closer to the heat lamps
are heated more than those farther away. This additional feature
may possibly be implemented using path tracing for the infrared
heat rays, and the springs can either lose stiffness (ks) or be affected
by heat in a more sophisticated manor, perhaps via the knowledge
of the plastic’s viscosity and plasticity.

8 CONTRIBUTIONS

Karthik integrated the Embree Ray Tracing Kernel and implemented
collisions for arbitrary meshes. He coded the first attempt at pre-
distortion and integrated the CGAL framework to implement ARAP
uv mapping.

James researched methods of producing conformal maps that
would minimize both angular and area distortion. He integrated
and adapted Assignment 1 to create a workflow that would take
the results of the plastic simulation and produce the corresponding
pre-distorted 2D image.

Rachel researched alternate time integration techniques such as
symplectic Euler and implicit Euler methods, as well as possible
plastic deformation principles such as viscosity and plasticity. She
implemented the implicit Euler time integration.
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